This worksheet will work through the blowup of \mathbb{C}^2 (or \mathbb{A}^2) at the origin in several steps in order to hopefully inspire you to examine the blowup of \mathbb{C}^3 at the origin and/or your homework. Feel free to skip around.

Let e_1, e_2 be the standard basis vectors in \mathbb{R}^2 , let $e_0 = e_1 + e_2$, and let Σ be the fan with maximal cones σ_2 generated by $\{e_0, e_1\}$ and σ_1 generated by $\{e_0, e_2\}$. (The unusual numbering is meant to agree with the higher dimensional case.)

- (1) Define a map of toric varieties $\varphi \colon X_{\Sigma} \to \mathbb{A}^2$ using the two fans.
- (2) Show that U_{σ_0} and U_{σ_2} are both isomorphic to \mathbb{A}^2 . (3) Describe the two restrictions $\mathbb{A}^2 \to \mathbb{A}^2$ of φ on coordinates.
- (4) Which points of \mathbb{A}^2 are in the image of U_{σ_1} and which are in the image of U_{σ_2} ?
- (5) Find the (set-theoretic) preimage of each point in X_{Σ} under φ . [hint: There are two possibilities within each open.
- (6) The blowup is the closure of the graph $\Gamma(f)$ of the map $f: \mathbb{C}^2 \setminus \{(0,0)\} \to \mathbb{P}^1$ given by f(a,b)=(a:b). Define a map $\psi\colon X_{\Sigma}\to\mathbb{C}^2\times\mathbb{P}^1$ so that the following diagram commutes where the bottom arrow is inclusion:

$$X_{\Sigma} \xrightarrow{\psi} \mathbb{A}^{2} \times \mathbb{P}^{1}$$

$$\varphi \downarrow \qquad \qquad \uparrow_{id \times f}$$

$$\mathbb{A}^{2} \longleftarrow \mathbb{A}^{2} \setminus \{(0,0)\}$$

(You could use fans for this but it's probably easier to define ψ on points directly.)

- (7) Show that ψ is an isomorphism (or just a bijection) when restricted to $\Gamma(f)$.
- (8) Describe the other points in the image of ψ .
- (9) bonus: Let ρ be the ray generated by e_0 . Show that the restriction of ψ to $V(\rho)$ (in the sense of the orbit-cone correspondence) is an isomorphism onto $\Gamma(f) \setminus \Gamma(f)$.