We are going to construct an affine toric variety from a *strongly convex rational polyhedral cone*.

Recall that the affine semigroup ring of our variety will be a subring of $\mathbb{C}[M]$, the ring of a torus T with character group M. However we start with the dual $N = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$, which is also isomorphic to \mathbb{Z}^n for some n but whose generators we will not think of as characters.

A convex polyhedral cone σ in $N \otimes_{\mathbb{Z}} \mathbb{R} \simeq \mathbb{R}^n$ is the positive span of a finite set of vectors $u_1, \ldots, u_s \in \mathbb{R}^n$: $\sigma = \{ \sum \lambda_i u_i \mid \lambda_i \in \mathbb{R}, \lambda_i \ge 0 \}.$

(1) Draw the cone spanned by (0, 1) and (-1, 2) in \mathbb{R}^2 .

(2) Show that σ is always convex.

(3) A rational polyhedral cone is one spanned by some $u_1, \ldots, u_s \in N$ (meaning that the vectors have integer entries). Describe a cone which is not rational.

(4) A strongly convex polyhedral cone is one with $\sigma \cap (-\sigma) = \{0\}$. Describe a cone which is not strongly convex.

Next week we will learn how to take the dual of a cone σ in $N\otimes_{\mathbb{Z}} \mathbb{R}$ to get a cone σ^{\vee} in

 $M \otimes_{\mathbb{Z}} \mathbb{R}$. (Remember that these vector spaces are both isomorphic to \mathbb{R}^n .) (5) Assume that σ^{\vee} is a rational polyhedral cone and show that $\sigma^{\vee} \cap M$ (the set of elements in σ^{\vee} with integral entries) forms a semigroup.

(6) The dual of the cone from (1) is spanned by (-1,0) and (2,1). Find generators of the semigroup.