On the last worksheet you found a bijection between \mathbb{Z}^n and the characters of a torus $T = \operatorname{Spec}(\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}])$. The textbook uses the notation χ^m for the character $\chi^m \colon (\mathbb{C}^*)^n \to \mathbb{C}^*$ corresponding to $m \in \mathbb{Z}^n$.

You might need to adjust your bijection and/or the isomorphism you define below in order to make the following properties true.

(1) Show that multiplying two characters (in the sense of multiplying functions) corresponds to adding vectors in \mathbb{Z}^n .

(2) Define an isomorphism between $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ and the affine semigroup ring $\mathbb{C}[\mathbb{Z}^n]$.

(3) Show that a matrix $\mathbb{Z}^s \to \mathbb{Z}^n$ induces a map of affine semigroup rings $\mathbb{C}[\mathbb{Z}^s] \to \mathbb{C}[\mathbb{Z}^n]$.

(4) Show that your isomorphism from (2) is canonical in the sense that the character $\chi^m : (\mathbb{C}^*)^n \to \mathbb{C}^*$ is induced by the map $\mathbb{Z} \to \mathbb{Z}^n$ given by the vector m. (First get a map of affine semigroup rings, then a map of affine varieties, and then a map on closed points.)

(5) Try to explain why the textbook uses the same notation for the character χ^m corresponding to $m \in \mathbb{Z}^n$ and the element χ^m of the affine semigroup ring $\mathbb{C}[\mathbb{Z}^n]$.

You have shown that $T \simeq \operatorname{Spec}(\mathbb{C}[M])$ where M is the (affine semi)group of characters of T under multiplication. We know that M is isomorphic to \mathbb{Z}^n , but we will use $\mathbb{C}[M]$ to avoid choosing a basis for it. Changing bases would correspond to a linear change of variables on the ring $\mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$.