Let R be a commutative ring, $I\subseteq R$ an ideal, and $\mathfrak{p}\subset R$ a prime ideal.

	algebraic description	geometric meaning
$\operatorname{Spec} R$		
p		
$\mathbb{V}(I)$		
$\operatorname{Spec}(R/I)$		
$R_{\mathfrak{p}}$		
$\operatorname{Spec} R_{\mathfrak{p}}$		

(1) Describe the Laurent polynomial ring $\mathbb{C}[s^{\pm 1}]$ as a localization. What are the points of the algebraic torus Spec $\mathbb{C}[s^{\pm 1}]$?

(2) We will write points in \mathbb{P}^1 as (x:y), where x and y are not both zero and $(x:y) = (\lambda x:\lambda y)$ for $\lambda \in \mathbb{C}^*$. A torus action on \mathbb{P}^1 is given by $s \cdot (x:y) \mapsto (x:sy)$. What are the orbits of this action?