Lemma (silly cone fact). Let C be a cone generated by $u_1, \ldots, u_t \in \mathbb{R}^n$. If c is in the (relative) interior of C, meaning that $\langle m, c \rangle > 0$ for all $m \in C^{\vee}$, then $c = \sum_{i=1}^t c_i u_i$ for some $c_1, \ldots, c_t > 0$.

Proof. Induct on t. By replacing \mathbb{R}^n with a linear subspace we can assume that dim C = n, so that $t \geq n$. If t = n then some change of coordinates sends u_1, \ldots, u_n to the standard basis vectors in \mathbb{R}^n . Then c is in the interior of C if and only if it lies on no coordinate plane if and only if it has all positive coordinates.

Assume the lemma holds for the cone B generated by u_1, \ldots, u_t and consider c in the interior of the cone $C \supseteq B$ generated by $u_1, \ldots, u_t, u_{t+1}$. Let $m_1, \ldots, m_k, \ldots, m_\ell$ be the generators of B^{\vee} so that $m_1, \ldots, m_k \in C^{\vee} \subseteq B^{\vee}$ and $m_{k+1}, \ldots, m_\ell \notin C^{\vee}$. Write $c = \sum_{i=1}^{t+1} c_i u_i$ for $c_0, \ldots, c_t, c_{t+1} \ge 0$. If $c_i > 0$ for all i then we are done.

Otherwise let $c' = c - c_{t+1}u_{t+1}$, so that $c' \in B$. If $c_{t+1} > 0$ and c' is in the interior of B then we are done by the induction hypothesis. If not then compare $\langle m_i, c' \rangle$ and $\langle m_i, u_{t+1} \rangle$ for $1 \le i \le \ell$. Recall that $\langle m_i, u_{t+1} \rangle \ge 0$ for $1 \le i \le k$ and $\langle m_i, u_{t+1} \rangle < 0$ for $k < i \le \ell$.

case 1: $c_{t+1} = 0$

Then c' = c so $\langle m_i, c \rangle > 0$ for all i. Choose d > 0 so that $d \langle m_i, c \rangle > \langle m_i, u_{t+1} \rangle$ for $1 \le i \le k$. This implies that $c - \frac{1}{d}u_{t+1}$ is in the interior of B, so we are done.

case 2: $c_{t+1} \neq 0$

Then $\langle m_i, c' \rangle \geq 0$ for all i because $c' \in B$, but also $\langle m_i, c' \rangle > 0$ for $k < i \leq \ell$ because subtracting u_{t+1} from c can only increase these values. Similarly for each $1 \leq i \leq k$ we have either $\langle m_i, c' \rangle = 0$ or $\langle m_i, u_{t+1} \rangle = 0$ but not both. Choose d > 0 so that $d \langle m_i, c' \rangle > -\langle m_i, u_{t+1} \rangle$ for $k < i \leq \ell$ and $dc_{t+1} > 1$. This implies that $c' + \frac{1}{d}u_{t+1}$ is in the interior of B where $c' + \frac{1}{d}u_{t+1} = c - \left(c_{t+1} - \frac{1}{d}\right)u_{t+1}$ for $c_{t+1} - \frac{1}{d} > 0$.

Corollary (probably helpful for homework). Let C be a rational polyhedral cone and $B \subseteq C$ a rational polyhedral subcone such that for all $c, c' \in C$ we have $c + c' \in B$ if and only if $c \in B$ and $c' \in B$. If B contains c in the (relative) interior of C then B contains all of C.

Proof. Let u_1, \ldots, u_t be the generators of C and write $c = \sum_{i=1}^t c_i u_i$ with $c_i > 0$ for all i, which is possible by the previous lemma. Then $c_i u_i \in B$ for all i by assumption so $u_i \in B$ for all i because B is a cone.