Let T be a torus with characters M and dual lattice IV, let ¥ be a fan in N ®z R, and let Xy,
be the toric variety of ¥, which is obtained from open sets U, = Spec C[o” N M] for o € 3.

For each 0 € ¥ define:
e v, to be the point in U, corresponding to the semigroup homomorphism o¥ N M — C
given by m +— 1if m € 0¥ N ot and m — 0 otherwise

e O(0) to be the orbit of 4, under the action of T’

e V(o) to be the Zariski closure of O(c) meaning either
— the smallest Zariski closed subset Xy containing O(o), or equivalently
— the smallest subset V' C Xy containing O(c) so that V' N U, is the vanishing of

some ideal I, C C[(¢’)¥ N M] for each 0’ € ¥

Lemma (3.2.4). Write N, for the subgroup of N spanned by the elements of some cone o.
Then ot N M is a subgroup of M and its dual is (naturally) isomorphic to N/N,.

Proof. If m,m’ € o-NM then (m + m’,u) = (m,u)+{m',u) = 0 and (—m,u) = — (m,u) =0
for all u € o so o+ N M is closed under addition and inverses. It also contains 0.

Considered as a map N — Z, an element m € M is in o+ if and only if (m,u) = 0 for all
u € o if and only if (m,u) = 0 for all u in the subgroup generated by o if and only if m
factors through N/N; — Z. Thus m is in the dual of N/N; exactly when m € ot. 0

Lemma. If M and L are Z-modules and M is free of finite rank then M*®z L = Homyz(M, L)
where M* is the dual Homyz(M,Z) of M. (This is also true over other rings.)

Proof. There is a bilinear map M* x L — Homgz(M, L) where the image of the pair (¢, 1)
sends m € M to ¢(m)l, the product of | and the integer ¢(m) in the Z-module L. Thus
there is a Z-linear map M* ®z L — Homgz (M, L). It is an isomorphism because its source
and target are both isomorphic to L" for r the rank of M. 0

Lemma (3.2.5). Fiz o € X.. Let O be the set of semigroup homomorphisms v: oY N M — C
so that v(m) # 0 exactly when m € o N M.
(1) The closed points T of the torus Spec Clo+ N M| are in bijection with elements of O'.
(2) The orbit O(c) in U, is O'.

Proof. The space Spec Clo+M] is a torus because o N M is a subgroup of M, which must
also be a lattice. By Proposition 1.3.1 the closed points of Spec Clo+ N M| are semigroup
homomorphisms o+ N M — C, which are the same as group homomorphisms o+ N M — C*.
By Exercise 3.2.5 the set of such homomorphisms is isomorphic to O'.

By Exercise 1.3.1 (t - v,)(m) = x™(t)y(m) for t € T and m € oY N M. Since x™(t) # 0
we have t - v, € O" and thus O(¢) C O’. There is a surjection N — N/N,, which remains
surjective after applying ®zC*. Note that

N X7z Cr = HomZ(M, (C*)
by the previous lemma because N is the dual of M. Similarly
(N/N,) ®z C* = Homg(o™ N M, C")
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because N/N, is the dual of 0= N M by Lemma 3.2.4. Thus there is a surjection T — T"
(which respects their group structures). The group 7" acts transitively on itself, meaning that
for each v € T” there exists some t' € T” so that t' - 7, = 7. Hence there also exists t € T,
mapping to t', so that t - v, =~vand 7" C T - v, = O(0).

Thus we have 7" C O(o) C O' where 7" = O’ by (1). O
Lemma (Exercise 3.2.6(c)). If T is a face of o' € ¥ then V(1) N Uy is defined by the ideal
I=(xX":me()'NM\1")

in C[(c")Y N M].
Lemma. Suppose v is a semigroup homomorphism representing a point in U, for some o € 3

and let O be its orbit. Then the set {m € oV N M : y(m) # 0} is equal to c¥ N7+ N M for
some face T of o and O is contained in U,.

Proof. By Exercise 3.2.6(a) the given set is the intersection of M with a face of ¢, and each
face of o is of the form o¥ N7+ for a face 7 of o by Proposition 1.2.10. Then by the proof
of Proposition 1.3.16 there is some m € ¥ N M so that

c'NM+Z(-m)=r1"NM.

This equality implies that m € 7 and —m € 7 so m € ¢¥ N7+ N M. Thus ~ is nonzero on m
by choice of 7, so v can be extended to —m and thus to 7¥ N M, meaning that ~ is a point
of U,. Since U, is closed under the action of T" we must have O =T -~y =C U,. [

Theorem (3.2.6). Use the notation above.
(a) There is a bijection between the cones in ¥ and the orbits of T in Xx, given by
o~ O(0).
(b) For each o € ¥
dim O(o) = dim Xy — dimo.
(¢) For each o € ¥ the affine open

Ua = U O(T)

over all faces T of 0.
(d) For each T € ¥ the subvariety

V(r)=JO()

over all cones o € 3 containing T as a face.

Proof. (a) Fix an orbit O of T and let o be the minimum cone in 3 satisfying O C U,
(which exists because the U, are closed under intersection). We will show that
O = O(o). This implies directly that o — O(o) is surjective, but also implies that it
is injective because O(c) and O(¢’) cannot be equal if they are minimally contained

in distinct opens U, and U, .
Choose a semigroup homomorphism v € O C U,. By the previous lemma there is
some face 7 of o so that 7 is nonzero exactly on ¢V N 7+, and 7 is actually contained
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in U, C U,. However v € U, implies O =T -~y C U,, so by choice of ¢ we must have
7 = 0. Therefore O is exactly the set O appearing in Lemma 3.2.5, which is shown
there to be equal to O(o).

(¢) Fix 0 € ¥. Since U, is closed under the action of 7" it must be a union of orbits, so
we must only determine which appear. If v € U, then + is nonzero exactly on o N7+
for a face 7 of o by the previous lemma, so by Lemma 3.2.5 the point v is contained
in O(7) for some face 7 of o, as desired. Conversely O(7) C U, C U, for each 7.

(b) By the proof of Lemma 3.2.5 the orbit O(o) is a torus with characters dual to N/N,.
Thus its dimension is equal to dim(N/N,) = dim N — dim N, = dim Xy, — dimo.

(d) Fix 7 € 3. Tt is enough to verify the equality of sets after intersecting with the open
cover {U, : ¢/ € ¥}. Thus we will show that

V(r)nUy = JO(0)

where we restrict the union to cones ¢ containing 7 as a face such that O(o) is also
contained in U,s. By (c) these are exactly the o with 7 a face of o and o a face of o'
By Exercise 3.2.6(c) (restated above due to the typo) the ideal defining V(1) N U, is
I={(x":me () NM\7H).

Let v € O(o) for 7 a face of o a face of o', considered as a semigroup homomorphism
(6")¥ N M — C. (Exercise 3.2.5 helps us see that it doesn’t matter whether we use
o or ¢ for the codomain of 7.) Then 7 is zero outside of (¢/)Y Not. Since 7 C o
we have 7+ D ot and (o) N M\ 7+ C (¢/)V N M \ o*. Hence for Y™ € I we also
have m € (¢/)V N M \ ot so v(m) = 0. By Exercise 1.3.1 plugging m into v is the
same as evaluating x™ at the point corresponding to 7, so I vanishes on v and thus
O(o) =T -+ CV(r) NU, because it is closed under the action of T

Conversely let v € V(7) N U,.. By the previous lemma 7 vanishes outside of
(/)Y N ot for some face o of 0’ and v € O(¢) by Lemma 3.2.5. Since I vanishes
on v we must have (o/)VN M\ 7t C (¢/)" N M\ o', s0 7 Dot and 7 C 0. Since
V(r) N U, is nonempty it must contain a point of O(7), so 7 is a face of ¢’ and thus
also a face of o.
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