Let T be a torus with characters M and dual lattice N, let Σ be a fan in $N \otimes_{\mathbb{Z}} \mathbb{R}$, and let X_{Σ} be the toric variety of Σ , which is obtained from open sets $U_{\sigma} = \operatorname{Spec} \mathbb{C}[\sigma^v \cap M]$ for $\sigma \in \Sigma$.

For each $\sigma \in \Sigma$ define:

- γ_{σ} to be the point in U_{σ} corresponding to the semigroup homomorphism $\sigma^{\vee} \cap M \to \mathbb{C}$ given by $m \mapsto 1$ if $m \in \sigma^{\vee} \cap \sigma^{\perp}$ and $m \mapsto 0$ otherwise
- $O(\sigma)$ to be the orbit of γ_{σ} under the action of T
- $V(\sigma)$ to be the Zariski closure of $O(\sigma)$ meaning either
 - the smallest Zariski closed subset X_{Σ} containing $O(\sigma)$, or equivalently
 - the smallest subset $V \subseteq X_{\Sigma}$ containing $O(\sigma)$ so that $V \cap U_{\sigma'}$ is the vanishing of some ideal $I_{\sigma} \subseteq \mathbb{C}[(\sigma')^{\vee} \cap M]$ for each $\sigma' \in \Sigma$

Lemma (3.2.4). Write N_{σ} for the subgroup of N spanned by the elements of some cone σ . Then $\sigma^{\perp} \cap M$ is a subgroup of M and its dual is (naturally) isomorphic to N/N_{σ} .

Proof. If $m, m' \in \sigma^{\perp} \cap M$ then $\langle m + m', u \rangle = \langle m, u \rangle + \langle m', u \rangle = 0$ and $\langle -m, u \rangle = -\langle m, u \rangle = 0$ for all $u \in \sigma$ so $\sigma^{\perp} \cap M$ is closed under addition and inverses. It also contains 0.

Considered as a map $N \to \mathbb{Z}$, an element $m \in M$ is in σ^{\perp} if and only if $\langle m, u \rangle = 0$ for all $u \in \sigma$ if and only if $\langle m, u \rangle = 0$ for all u in the subgroup generated by σ if and only if m factors through $N/N_i \to \mathbb{Z}$. Thus m is in the dual of N/N_i exactly when $m \in \sigma^{\perp}$.

Lemma. If M and L are \mathbb{Z} -modules and M is free of finite rank then $M^* \otimes_{\mathbb{Z}} L = \operatorname{Hom}_{\mathbb{Z}}(M, L)$ where M^* is the dual $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ of M. (This is also true over other rings.)

Proof. There is a bilinear map $M^* \times L \to \operatorname{Hom}_{\mathbb{Z}}(M, L)$ where the image of the pair (φ, l) sends $m \in M$ to $\varphi(m)l$, the product of l and the integer $\varphi(m)$ in the \mathbb{Z} -module L. Thus there is a \mathbb{Z} -linear map $M^* \otimes_{\mathbb{Z}} L \to \operatorname{Hom}_{\mathbb{Z}}(M, L)$. It is an isomorphism because its source and target are both isomorphic to L^r for r the rank of M.

Lemma (3.2.5). Fix $\sigma \in \Sigma$. Let O' be the set of semigroup homomorphisms $\gamma \colon \sigma^{\vee} \cap M \to \mathbb{C}$ so that $\gamma(m) \neq 0$ exactly when $m \in \sigma^{\perp} \cap M$.

- (1) The closed points T' of the torus $\operatorname{Spec} \mathbb{C}[\sigma^{\perp} \cap M]$ are in bijection with elements of O'.
- (2) The orbit $O(\sigma)$ in U_{σ} is O'.

Proof. The space $\mathbb{C}[\sigma^{\perp}M]$ is a torus because $\sigma^{\perp} \cap M$ is a subgroup of M, which must also be a lattice. By Proposition 1.3.1 the closed points of $\operatorname{Spec}\mathbb{C}[\sigma^{\perp} \cap M]$ are semigroup homomorphisms $\sigma^{\perp} \cap M \to \mathbb{C}$, which are the same as group homomorphisms $\sigma^{\perp} \cap M \to \mathbb{C}^*$. By Exercise 3.2.5 the set of such homomorphisms is isomorphic to O'.

By Exercise 1.3.1 $(t \cdot \gamma_{\sigma})(m) = \chi^{m}(t)\gamma(m)$ for $t \in T$ and $m \in \sigma^{\vee} \cap M$. Since $\chi^{m}(t) \neq 0$ we have $t \cdot \gamma_{\sigma} \in O'$ and thus $O(\sigma) \subset O'$. There is a surjection $N \to N/N_{\sigma}$, which remains surjective after applying $\otimes_{\mathbb{Z}} \mathbb{C}^{*}$. Note that

$$N \otimes_{\mathbb{Z}} \mathbb{C}^* = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{C}^*)$$

by the previous lemma because N is the dual of M. Similarly

$$(N/N_{\sigma}) \otimes_{\mathbb{Z}} \mathbb{C}^* = \operatorname{Hom}_{\mathbb{Z}}(\sigma^{\perp} \cap M, \mathbb{C}^*)$$

because N/N_{σ} is the dual of $\sigma^{\perp} \cap M$ by Lemma 3.2.4. Thus there is a surjection $T \to T'$ (which respects their group structures). The group T' acts transitively on itself, meaning that for each $\gamma \in T'$ there exists some $t' \in T'$ so that $t' \cdot \gamma_{\sigma} = \gamma$. Hence there also exists $t \in T$, mapping to t', so that $t \cdot \gamma_{\sigma} = \gamma$ and $T' \subset T \cdot \gamma_{\sigma} = O(\sigma)$.

Thus we have $T' \subset O(\sigma) \subset O'$ where T' = O' by (1).

Lemma (Exercise 3.2.6(c)). If τ is a face of $\sigma' \in \Sigma$ then $V(\tau) \cap U_{\sigma'}$ is defined by the ideal

$$I = \left\langle \chi^m : m \in (\sigma')^{\vee} \cap M \setminus \tau^{\perp} \right\rangle$$

in $\mathbb{C}[(\sigma')^{\vee} \cap M]$.

Lemma. Suppose γ is a semigroup homomorphism representing a point in U_{σ} for some $\sigma \in \Sigma$ and let O be its orbit. Then the set $\{m \in \sigma^{\vee} \cap M : \gamma(m) \neq 0\}$ is equal to $\sigma^{\vee} \cap \tau^{\perp} \cap M$ for some face τ of σ and O is contained in U_{τ} .

Proof. By Exercise 3.2.6(a) the given set is the intersection of M with a face of σ^{\vee} , and each face of σ^{\vee} is of the form $\sigma^{\vee} \cap \tau^{\perp}$ for a face τ of σ by Proposition 1.2.10. Then by the proof of Proposition 1.3.16 there is some $m \in \sigma^{\vee} \cap M$ so that

$$\sigma^{\vee} \cap M + \mathbb{Z}(-m) = \tau^{\vee} \cap M.$$

This equality implies that $m \in \tau$ and $-m \in \tau$ so $m \in \sigma^{\vee} \cap \tau^{\perp} \cap M$. Thus γ is nonzero on m by choice of τ , so γ can be extended to -m and thus to $\tau^{\vee} \cap M$, meaning that γ is a point of U_{τ} . Since U_{τ} is closed under the action of T we must have $O = T \cdot \gamma = \subseteq U_{\tau}$.

Theorem (3.2.6). Use the notation above.

(a) There is a bijection between the cones in Σ and the orbits of T in X_{Σ} given by

$$\sigma \mapsto O(\sigma)$$
.

(b) For each $\sigma \in \Sigma$

$$\dim O(\sigma) = \dim X_{\Sigma} - \dim \sigma.$$

(c) For each $\sigma \in \Sigma$ the affine open

$$U_{\sigma} = \bigcup_{\tau} O(\tau)$$

over all faces τ of σ .

(d) For each $\tau \in \Sigma$ the subvariety

$$V(\tau) = \bigcup_{\sigma} O(\sigma)$$

over all cones $\sigma \in \Sigma$ containing τ as a face.

Proof. (a) Fix an orbit O of T and let σ be the minimum cone in Σ satisfying $O \subseteq U_{\sigma}$ (which exists because the U_{σ} are closed under intersection). We will show that $O = O(\sigma)$. This implies directly that $\sigma \mapsto O(\sigma)$ is surjective, but also implies that it is injective because $O(\sigma)$ and $O(\sigma')$ cannot be equal if they are minimally contained in distinct opens U_{σ} and $U_{\sigma'}$.

Choose a semigroup homomorphism $\gamma \in O \subseteq U_{\sigma}$. By the previous lemma there is some face τ of σ so that γ is nonzero exactly on $\sigma^{\vee} \cap \tau^{\perp}$, and γ is actually contained

in $U_{\tau} \subseteq U_{\sigma}$. However $\gamma \in U_{\tau}$ implies $O = T \cdot \gamma \subseteq U_{\tau}$, so by choice of σ we must have $\tau = \sigma$. Therefore O is exactly the set O' appearing in Lemma 3.2.5, which is shown there to be equal to $O(\sigma)$.

- (c) Fix $\sigma \in \Sigma$. Since U_{σ} is closed under the action of T it must be a union of orbits, so we must only determine which appear. If $\gamma \in U_{\sigma}$ then γ is nonzero exactly on $\sigma^{\vee} \cap \tau^{\perp}$ for a face τ of σ by the previous lemma, so by Lemma 3.2.5 the point γ is contained in $O(\tau)$ for some face τ of σ , as desired. Conversely $O(\tau) \subseteq U_{\tau} \subseteq U_{\sigma}$ for each τ .
- (b) By the proof of Lemma 3.2.5 the orbit $O(\sigma)$ is a torus with characters dual to N/N_{σ} . Thus its dimension is equal to $\dim(N/N_{\sigma}) = \dim N \dim N_{\sigma} = \dim X_{\Sigma} \dim \sigma$.
- (d) Fix $\tau \in \Sigma$. It is enough to verify the equality of sets after intersecting with the open cover $\{U_{\sigma'}: \sigma' \in \Sigma\}$. Thus we will show that

$$V(\tau) \cap U_{\sigma'} = \bigcup_{\sigma} O(\sigma)$$

where we restrict the union to cones σ containing τ as a face such that $O(\sigma)$ is also contained in $U_{\sigma'}$. By (c) these are exactly the σ with τ a face of σ and σ a face of σ' . By Exercise 3.2.6(c) (restated above due to the typo) the ideal defining $V(\tau) \cap U_{\sigma'}$ is $I = \langle \chi^m : m \in (\sigma')^{\vee} \cap M \setminus \tau^{\perp} \rangle$.

Let $\gamma \in O(\sigma)$ for τ a face of σ a face of σ' , considered as a semigroup homomorphism $(\sigma')^{\vee} \cap M \to \mathbb{C}$. (Exercise 3.2.5 helps us see that it doesn't matter whether we use σ or σ' for the codomain of γ .) Then γ is zero outside of $(\sigma')^{\vee} \cap \sigma^{\perp}$. Since $\tau \subseteq \sigma$ we have $\tau^{\perp} \supseteq \sigma^{\perp}$ and $(\sigma')^{\vee} \cap M \setminus \tau^{\perp} \subseteq (\sigma')^{\vee} \cap M \setminus \sigma^{\perp}$. Hence for $\chi^m \in I$ we also have $m \in (\sigma')^{\vee} \cap M \setminus \sigma^{\perp}$ so $\gamma(m) = 0$. By Exercise 1.3.1 plugging m into γ is the same as evaluating χ^m at the point corresponding to γ , so I vanishes on γ and thus $O(\sigma) = T \cdot \gamma \subseteq V(\tau) \cap U_{\sigma'}$ because it is closed under the action of T.

Conversely let $\gamma \in V(\tau) \cap U_{\sigma'}$. By the previous lemma γ vanishes outside of $(\sigma')^{\vee} \cap \sigma^{\perp}$ for some face σ of σ' and $\gamma \in O(\sigma)$ by Lemma 3.2.5. Since I vanishes on γ we must have $(\sigma')^{\vee} \cap M \setminus \tau^{\perp} \subseteq (\sigma')^{\vee} \cap M \setminus \sigma^{\perp}$, so $\tau^{\perp} \supseteq \sigma^{\perp}$ and $\tau \subseteq \sigma$. Since $V(\tau) \cap U_{\sigma'}$ is nonempty it must contain a point of $O(\tau)$, so τ is a face of σ' and thus also a face of σ .