
Let T be a torus with characters M and dual lattice N , let Σ be a fan in N ⊗Z R, and let XΣ

be the toric variety of Σ, which is obtained from open sets Uσ = SpecC[σv ∩M ] for σ ∈ Σ.

For each σ ∈ Σ define:
• γσ to be the point in Uσ corresponding to the semigroup homomorphism σ∨ ∩M → C
given by m 7→ 1 if m ∈ σ∨ ∩ σ⊥ and m 7→ 0 otherwise

• O(σ) to be the orbit of γσ under the action of T
• V (σ) to be the Zariski closure of O(σ) meaning either

– the smallest Zariski closed subset XΣ containing O(σ), or equivalently
– the smallest subset V ⊆ XΣ containing O(σ) so that V ∩ Uσ′ is the vanishing of
some ideal Iσ ⊆ C[(σ′)∨ ∩M ] for each σ′ ∈ Σ

Lemma (3.2.4). Write Nσ for the subgroup of N spanned by the elements of some cone σ.
Then σ⊥ ∩M is a subgroup of M and its dual is (naturally) isomorphic to N/Nσ.

Proof. Ifm,m′ ∈ σ⊥∩M then ⟨m+m′, u⟩ = ⟨m,u⟩+⟨m′, u⟩ = 0 and ⟨−m,u⟩ = −⟨m,u⟩ = 0
for all u ∈ σ so σ⊥ ∩M is closed under addition and inverses. It also contains 0.

Considered as a map N → Z, an element m ∈ M is in σ⊥ if and only if ⟨m,u⟩ = 0 for all
u ∈ σ if and only if ⟨m,u⟩ = 0 for all u in the subgroup generated by σ if and only if m
factors through N/Ni → Z. Thus m is in the dual of N/Ni exactly when m ∈ σ⊥. □

Lemma. If M and L are Z-modules and M is free of finite rank then M∗⊗ZL = HomZ(M,L)
where M∗ is the dual HomZ(M,Z) of M . (This is also true over other rings.)

Proof. There is a bilinear map M∗ × L → HomZ(M,L) where the image of the pair (φ, l)
sends m ∈ M to φ(m)l, the product of l and the integer φ(m) in the Z-module L. Thus
there is a Z-linear map M∗ ⊗Z L → HomZ(M,L). It is an isomorphism because its source
and target are both isomorphic to Lr for r the rank of M . □

Lemma (3.2.5). Fix σ ∈ Σ. Let O′ be the set of semigroup homomorphisms γ : σ∨ ∩M → C
so that γ(m) ̸= 0 exactly when m ∈ σ⊥ ∩M .

(1) The closed points T ′ of the torus SpecC[σ⊥ ∩M ] are in bijection with elements of O′.
(2) The orbit O(σ) in Uσ is O′.

Proof. The space SpecC[σ⊥M ] is a torus because σ⊥ ∩M is a subgroup of M , which must
also be a lattice. By Proposition 1.3.1 the closed points of SpecC[σ⊥ ∩M ] are semigroup
homomorphisms σ⊥ ∩M → C, which are the same as group homomorphisms σ⊥ ∩M → C∗.
By Exercise 3.2.5 the set of such homomorphisms is isomorphic to O′.

By Exercise 1.3.1 (t · γσ)(m) = χm(t)γ(m) for t ∈ T and m ∈ σ∨ ∩ M . Since χm(t) ̸= 0
we have t · γσ ∈ O′ and thus O(σ) ⊂ O′. There is a surjection N → N/Nσ, which remains
surjective after applying ⊗ZC∗. Note that

N ⊗Z C∗ = HomZ(M,C∗)

by the previous lemma because N is the dual of M . Similarly

(N/Nσ)⊗Z C∗ = HomZ(σ
⊥ ∩M,C∗)
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because N/Nσ is the dual of σ⊥ ∩M by Lemma 3.2.4. Thus there is a surjection T → T ′

(which respects their group structures). The group T ′ acts transitively on itself, meaning that
for each γ ∈ T ′ there exists some t′ ∈ T ′ so that t′ · γσ = γ. Hence there also exists t ∈ T ,
mapping to t′, so that t · γσ = γ and T ′ ⊂ T · γσ = O(σ).

Thus we have T ′ ⊂ O(σ) ⊂ O′ where T ′ = O′ by (1). □

Lemma (Exercise 3.2.6(c)). If τ is a face of σ′ ∈ Σ then V (τ) ∩ Uσ′ is defined by the ideal

I =
〈
χm : m ∈ (σ′)∨ ∩M \ τ⊥

〉
in C[(σ′)∨ ∩M ].

Lemma. Suppose γ is a semigroup homomorphism representing a point in Uσ for some σ ∈ Σ
and let O be its orbit. Then the set {m ∈ σ∨ ∩M : γ(m) ̸= 0} is equal to σ∨ ∩ τ⊥ ∩M for
some face τ of σ and O is contained in Uτ .

Proof. By Exercise 3.2.6(a) the given set is the intersection of M with a face of σ∨, and each
face of σ∨ is of the form σ∨ ∩ τ⊥ for a face τ of σ by Proposition 1.2.10. Then by the proof
of Proposition 1.3.16 there is some m ∈ σ∨ ∩M so that

σ∨ ∩M + Z(−m) = τ∨ ∩M.

This equality implies that m ∈ τ and −m ∈ τ so m ∈ σ∨ ∩ τ⊥ ∩M . Thus γ is nonzero on m
by choice of τ , so γ can be extended to −m and thus to τ∨ ∩M , meaning that γ is a point
of Uτ . Since Uτ is closed under the action of T we must have O = T · γ =⊆ Uτ . □

Theorem (3.2.6). Use the notation above.
(a) There is a bijection between the cones in Σ and the orbits of T in XΣ given by

σ 7→ O(σ).

(b) For each σ ∈ Σ
dimO(σ) = dimXΣ − dimσ.

(c) For each σ ∈ Σ the affine open

Uσ =
⋃
τ

O(τ)

over all faces τ of σ.
(d) For each τ ∈ Σ the subvariety

V (τ) =
⋃
σ

O(σ)

over all cones σ ∈ Σ containing τ as a face.

Proof. (a) Fix an orbit O of T and let σ be the minimum cone in Σ satisfying O ⊆ Uσ

(which exists because the Uσ are closed under intersection). We will show that
O = O(σ). This implies directly that σ 7→ O(σ) is surjective, but also implies that it
is injective because O(σ) and O(σ′) cannot be equal if they are minimally contained
in distinct opens Uσ and Uσ′ .
Choose a semigroup homomorphism γ ∈ O ⊆ Uσ. By the previous lemma there is

some face τ of σ so that γ is nonzero exactly on σ∨ ∩ τ⊥, and γ is actually contained
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in Uτ ⊆ Uσ. However γ ∈ Uτ implies O = T · γ ⊆ Uτ , so by choice of σ we must have
τ = σ. Therefore O is exactly the set O′ appearing in Lemma 3.2.5, which is shown
there to be equal to O(σ).

(c) Fix σ ∈ Σ. Since Uσ is closed under the action of T it must be a union of orbits, so
we must only determine which appear. If γ ∈ Uσ then γ is nonzero exactly on σ∨ ∩ τ⊥

for a face τ of σ by the previous lemma, so by Lemma 3.2.5 the point γ is contained
in O(τ) for some face τ of σ, as desired. Conversely O(τ) ⊆ Uτ ⊆ Uσ for each τ .

(b) By the proof of Lemma 3.2.5 the orbit O(σ) is a torus with characters dual to N/Nσ.
Thus its dimension is equal to dim(N/Nσ) = dimN − dimNσ = dimXΣ − dimσ.

(d) Fix τ ∈ Σ. It is enough to verify the equality of sets after intersecting with the open
cover {Uσ′ : σ′ ∈ Σ}. Thus we will show that

V (τ) ∩ Uσ′ =
⋃
σ

O(σ)

where we restrict the union to cones σ containing τ as a face such that O(σ) is also
contained in Uσ′ . By (c) these are exactly the σ with τ a face of σ and σ a face of σ′.
By Exercise 3.2.6(c) (restated above due to the typo) the ideal defining V (τ) ∩ Uσ′ is
I =

〈
χm : m ∈ (σ′)∨ ∩M \ τ⊥

〉
.

Let γ ∈ O(σ) for τ a face of σ a face of σ′, considered as a semigroup homomorphism
(σ′)∨ ∩M → C. (Exercise 3.2.5 helps us see that it doesn’t matter whether we use
σ or σ′ for the codomain of γ.) Then γ is zero outside of (σ′)∨ ∩ σ⊥. Since τ ⊆ σ
we have τ⊥ ⊇ σ⊥ and (σ′)∨ ∩M \ τ⊥ ⊆ (σ′)∨ ∩M \ σ⊥. Hence for χm ∈ I we also
have m ∈ (σ′)∨ ∩M \ σ⊥ so γ(m) = 0. By Exercise 1.3.1 plugging m into γ is the
same as evaluating χm at the point corresponding to γ, so I vanishes on γ and thus
O(σ) = T · γ ⊆ V (τ) ∩ Uσ′ because it is closed under the action of T .
Conversely let γ ∈ V (τ) ∩ Uσ′ . By the previous lemma γ vanishes outside of

(σ′)∨ ∩ σ⊥ for some face σ of σ′ and γ ∈ O(σ) by Lemma 3.2.5. Since I vanishes
on γ we must have (σ′)∨ ∩M \ τ⊥ ⊆ (σ′)∨ ∩M \ σ⊥, so τ⊥ ⊇ σ⊥ and τ ⊆ σ. Since
V (τ) ∩ Uσ′ is nonempty it must contain a point of O(τ), so τ is a face of σ′ and thus
also a face of σ.

□


